The Mathematical Formalism and the
Standard Way of Thinking about It

There is an algorithm (and the name of that algorithm, of course,
is quantum mechanics) for predicting the behaviors of physical
systems, which correctly predicts all of the unfathomable-looking
behaviors of the electron in the story in Chapter 1, and there is a
standard way of interpreting that algorithm (that is, a way attempt-
ing to fathom those behaviors, a way of attempting to confront the
fact of superposition) which can more or less be traced back to
some sayings of Niels Bohr.! This chapter will describe that algo-
rithm and rehearse that standard way of talking about it, and then
it will apply them both, in some detail, to that story.

Mathematical Preliminaries

Let me say a few things, to begin with, about the particular math-
ematical language in which it is most convenient to write the
algorithm down.

Let’s start with something about vectors. A good way to think
about vectors is to think about arrows. A vector is a mathematical
object, an abstract object, which (like an arrow) is characterized by

1. The story of the evolution of this standard way of thinking is a very long and
complicated one, and it will be completely ignored here. The far more obscure
question of what Bohr himself really thought about these issues will be ignored too.
What will matter for us is the legacy which Bohr and his followers have left, by
whatever route, and whatever they themselves may have originally thought, to
modern physics. That legacy, as it stands now, can be characterized fairly clearly.
The name of that legacy is the Copenhagen interpretation of quantum mechanics.
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a direction (the direction in which the arrow i sointing) and a
magnitude (the length of the arrow).

Think of a coordinate system with a specified origin point. Every
distinct geometrical point in the space mapped out by such a
coordinate system can be associated with some particular (and
distinct) vector, as follows: the vector associated with any given
point (in that given coordinate system) is the one whose tip lies at
the given point and whose tail lies at the origin. The length of that
vector is the distance between those two points, and the direction
of that vector is the direction from the origin to the given point (see
figure 2.1).

The infinite collection of vectors associated with a llthe points in
such a spaceis referredtoasavecs$ pac e .

Spaces of points can be characterized by (among other things)
their dimensionality, and spaces of vectors can too. The dimension
of a given vector space is just the dimension of the associated space
of points. That latter dimension, of course, is equal to the number
of magnitudes, the number of coordinates, that need to be specified
in order to pick out (given a coordinate system) some particular
geometrical point.

given point

vector associated with
the given point

origin point

coordinate axes |:|

Figure 2.1
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Figure 2.2, for example, shows a two-dimensional space,apd n e
of points, wherein (given the indicated coordinate system) two
coordinates need to be specified (the x-coordinate and the y-coor-
dinate) in order to pick out a point. The reader can convince herself
that a line of points forms a one-dimensional space, and that the
space we move around in has three dimensions. Spaces of points
with more dimensions than that are hard to visualize, but the
formal handling (that is: the mathematical handling) of such spaces
is not a problem.

Let’s introduce a notation for vectors: the symbols | ) around
some expression will henceforth indicate that that expression is the
name of the vector; so that, for example, |A) will denote the vector
called A. That’s the notation most commonly used in the literature
of quantum mechanics.

Vectors can be added to one another. Here’s how: To add |A) to
| Empve the tail of | o he tip of |  Awjthout altering the length
or the direction of either in the process). The sum of |A) and |B)
(which is written lA) + | Bsxefined to be that vector ( | véhose)

tail now coincides with the tail of l4) and whose tip now coincides
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with the tip of | Hsge figure 2.3). The sum of any two vectors in
any particular vector space is always another vector in that same
space (that, indeed, is part of the definition of a vector space).
Think, for example, of the spaces discussed above.

That fact is going to be important. Vectors, in quantum mechan-
ics, are going to represent physical states of affairs. Thea d d i t
of vectors will turn out to have something to do with thes u p e r
S i tof paysical states of affairs. The fact that two vectors can be
added together to form a third will turn out to accommodate,
within the algorithm, the fact that certain physical states of affairs,
states like being white, are superpositions of certain other states of
affairs, states like being hard and being soft; but of all this more
later.

Vectors can be multiplied too. There are two ways to multiply
them. First of all, they can be multiplied by numbers. The vector
SA ) say, is defined to be that vector whose direction is the same
as the direction of | Aarjd whose lengthis 5 times the length of | A .
SI A) Al ANl Al ARl AOQf course, if | As)an element
of a certain vector space, any number t i nheAs)ll be an element
of that space too.

The other way to multiply vectors is to multiply them by other
vectors. The multiplication of a vector by another vector yields a
number (not a vector!). | Atimes | Ewhich is written ( Al iB »
defined to be the following number: the length of | Atijnes the
length of | Hidnes the cosine of the angle, a between | Aapd | B)

B>

IC>
|A> |A>

B>

Figure 2.3
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The length of | Aalko called the n avrof | Awhich is written
| As bbyiously equal to the square root of the number (A lsinde) ,
the cosine of 0° (0° is the angle between |  Anl itself) is equal to 1.

So, vectors plus vectors are vectors, and vectors times numbers
are vectors, and vectors times vectors are numbers.

Here’s a slightly more sophisticated way of defining a vector
space: a vector space is a collection of vectors such that the sum of
any two vectors in the collection is also a vector in the collection,
and such that any vector in the collection times any (real) number
is also a vector in the collection. Such collections (by the way)
clearly have to be infinite. Think, again, of the examples of spaces
described above.

Ifl ADbandl B bandyet ( AL DMthat is: if the angle
between| An)l 1 [§190°, since cos 90° - 0), then | An}i| Brg
said to be orthogonal to one another. Or © fnoajust means per-
pendicular.

Here’s another definition of dimension: The dimension of a vec-
tor space is equal (by definition) to the maximum number (call that
number N) of vectors | All A.2 ) ,AwMidh can be chosen in
the space such that for all values of i and j from 1 through N such
thati = j, ( A ,. o Ahat i), the dimension of a space is equal to
the number of mutually perpendicular directions in which vectors
within that space can point.

Given a space, there are generally lots of ways to pick out those
directions. Pick a vector, at random, from an N-dimensional space.
It will always be possible to find a set of N — 1 other vectors in
that space which are all orthogonal to that original vector and to
one another. In most cases, given that original vector, there will still
be many such orthogonal sets (or, rather, an infinity of such sets)
to choose from. Figure 2.4 shows some examples.

Think of an N-dimensional space. Think of any collection of N
mutually orthogonal vectors in that space, and suppose that the
norm, the length, of each of those vectors happens to be 1. Such a
set of vectors is said to form an orthonormal b asfi that N-di-
mensional space. Or t ik for orthogonal, n amra ik for norm-1,
and here’s why sets of vectors like that are called b a sof thkeir

spaces: Suppose that the set | Alt A.2.) Afddn)s a basis of a
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Figure 2.4

certain N-dimensional vector space; it turns out that any vector
whatever in that space (call it |B)) can be expressed as the following
sort of sum:

(21) |B> = b)‘A1> + bz'Az) + ... bNIAN>

where the b iare all simply numbers—more particularly, simply the
following numbers:

(22 bi- BI)A

So any vector in a vector space can be “built up” (as in (2.1)) out
of the elements of any basis of that space. All that is illustrated, for
a two-dimensional space, in figure 2.5.

Bases end up amounting to precisely the same thing as coordinate
systems: given a coordinate system for an N-dimensional point
space, N numbers (the coordinate values) will suffice to pick out a
point; given a basis of an N-dimensional vector space, N numbers
(the b iof equation (2.1)) will suffice to pick out a vector. Vectors
which are of norm 1 and which point along the perpendicular
coordinate axes of an N-dimensional point space will constitute an
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IB>. bylAp +bylAy>
(Added up as in fig. 2.3)

|A2>

Figure 2.5

orthonormal basis of the associated N-dimensional vector space,

and vice versa.

For any space of more than a single dimension, there will be an
infinity of equivalently good orthornormal bases to choose from.
Any vector in that space will be writable, a la (2.1), in terms of any
of those bases, but of course, for a given vector | Bh} npmbers h i
in (2.1) (which, by the way are called expansion coefficients) will
differ from basis to basis. Figure 2.6 shows how that works.

Now, it happens to be the case that for any three vectors | A )B,) |
and | )ethe product | Ainjes the vector (B) + I0)) is equal to the
product | Ainjes E blus the product | Ainjes IC) :

@3) (AkI &Y AEBAI ¢e)

and that can be shown to entail, for any two vectors 1 Mand | Q) ,
that

@4a) 1 M)Q)- (m+q tt)+lmrcP 2A ..+
mv+q N) JAN)
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IB. b LA*b21A2)

FiguZ2é

and that

(2. 4b¢M|Q) = mug: + mags + .. . + mngn

wherein the 7, and q lare the expansion coefficientsof 1 Mnd 1 Q)
respectively, in any particular basis | ATh¢ numbers q iand m1; will,

of course, depend on the choice of basis, but note that the sum of
their products in (2.4b) (which is equal to ( M1 @Bich depends
only on which vectors 1 Mnd | Ch)ppen to b eand not on which
basis we happen to map them out in) will not. That sum, rather,
will be i n \a anuhder changes of basis.

Suppose that we have agreed to settle on some particular basis
for some particular vector space. Once that’s done, all that will be
required for us to pick out some particular vector ( | €y) will be
to specify the numbers (the expansion coefficients) q lof | ¥9r that
particular basis. Those N numbers then (once the basis is chosen)
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can serve to represent the vector. Those numbers are usually written
down in a column; for example:

(3) I Q 1
11
i 3
1 <M1=)1
= the three-dimensional vector for which Q@2 ¥ §
<h3=.3s

(see equation (2.2)), w h e tr e eAare the chosen basis vectors. It
follows from (2.4b) that the norm (the length) of any vector | Q
will be equal to the square root of the sum of the squares of its
expansion coefficients. That number, too, must obviously be invari-
ant under changes of basis.

That’s all that will concern us about vectors. The other sorts of
mathematical objects which we shall need to know something
about are operators.

Operators are mechanisms for making new vectors out of old
ones. An operator on a vector space, more particularly, is some
def nite prescription for taking every vector in that space into some
other vector; it is a mapping (for those readers who know the
mathematical meaning of that word) of a vector space into itself.

Let’s introduce a notation. Suppose that the operator called a is
applied to the vector | B(that is: suppose that the prescription
called O is carried out on the vector IB » The result of that oper-
ation, of that procedure, is written:

(5) alB)
Then what was just said about operators can be expressed like this:

(2.7)a B) - | B for any vector | Bn)the vector space on which
a is an operator.

w h e Ir "B} some vector in the same space as | B ) .
Here are some examples. One example is the “unit” operator
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(that’s the prescription which instructs us to multiply every vector
in the space by the number 1, to transform every vector into itself).
The unit operator is the one for which

2.8 Oul Bl)B)I B

Another example is the operator “multiply every vector by the
number 5.” Another example is the operator “rotate every vector
clockwise by 90° about some particular vector | )e {see figure 2.7).
Another example is the operator “map every vector in the space
into some particular vector | A')

The particular sorts of operators which will play a vital role in
the quantum-mechanical algorithm are linear operators. Linear
operators are, by definition, operators which have the following

properties:
29a) O@A)+ B») OA)+ OB)
and

(2©) O (K> ) cQA»)

SupposgdaltGi savectpoi ntdinrge otulbyft he
pageThernr heper at"orot avervyectiot hspace
clockwiy9 aboultC>wi Hbt hitsdA =andB > :

IA> bemes Qla>

0 B>

Figure 2.7
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for any vectors | )And | En&any number ¢ Here’s what (2.9a)
says: take that vector which is the sum of two other vectors | Ang
| Bu)h sums, remember, are always vectors), and operate on that
sum with any linear operator. The resultant (new) vector will be
that vector which is the sum of the new vector produced by oper-
atingon | Aith ° and the new vector produced by operating on
IB) with O What (2.9b) says is that the vector produced by oper-
ating on C times |A) with ° is the same as C times the vector
produced by operating on | Asdlf with O for any number c.2

Now, the two conditions in (2.9) pick out a very particular sort
of operator. They are by no means properties of operators in
general. Let me leave it as an exercise for the reader to show, for
example, that of the four operators just now described, the first
three are linear and the last one isn’t.

Linear operators are very conveniently representable by arrays
of numbers. We learned it was possible, remember, to represent any
N-dimensional v e ¢ givenra choice of basis, by Nn ubne a
equation (2.5)); and it similarly turns out to be possible to represent
any linear operator (the linearity is crucial here) on an N-dimen-
sional vector space by N numbers. Those N2 numbers are tradi-
tionally arranged not in a column (as in equation (2.5), for vectors),
but in a matrix, a s(for a two-dimensional operator, s a)yf 6 | o:ws

(22 o=l0 02

The numbers O ,jn (2.10) are defined to be
(2. 10)=( ®I; A, »

That is: the number O ;,  isveheor O A jmulitiplied by the vector
|A,) (such products of vectors, remember, are always n U ¥ ) ,

2. The two parts of (2.9) aren’t completely independent of one another, by the
way. Note, for example, that in the event that c is an integer, (2.9b) is entailed by
(2.9a).
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wh etr deAaNt)encen o b @a e s b b hsep aTclerse 'a
r ufl card t i polpyeir mg torbi yceecst lr uwnmiscsh:

(2.2) |On On » b - (O11by + Onpby)
O21 Opn b, (0216, + Oxby)

Nott éh atritghlesainaif@.12)i v e cd @lr usnon ;t h
rulpeu esgtdit hper o dbbcotp ¢ oaat a mak e c t C
col wmmewecdolrumn .

He svehg | | n a tha tsisweliftt u O L wWwweo NP'rto v «
I he)t d atl i aoeyagrronata t ecvaenru b g usepl eyc i f
(igvemasih® beg p gdainhne Odo £ g u a t210p n s
a (2.11) (ujsatea nwe ¢ ¢ anu rbieqsupeel chi W rpalc i
i ngNebp € quia@n)a n(@2)a n(@s));a nidt uromug
t hfadarnlyi noepaerr @ W ecracna | e@s$ed tfoemn y
veclmi mipynutli pltyh@nigabxy hleB) - c ol
(igveaenawayab a s hed )i @dXN.T h at carnlyi n e :
operGa manwe oB):

(2.3) By = O Oz X b, _ (O11b1 + Onzby)
O, Oy b, (02161 + Opby)

(Ol 140l b2A) § ( @ 1400l 2 2K 11)) 'B
S N

t h fassneuhsaf/s

wh elra)rtehcebs ba vyie s s@i e e x 1 asgsgluiat y
flol dwsmtuiad2n)aa n(2.2) a n(@.5)).

3. Perhaps it’s worth saying all that out in words: In order to calculate the effect
of any linear operator O on any vector |B), first choose a basis, then calculate the
|B) column vector in that basis by means of formula (2.2); then calculate the
operator matrix in that basis by means of formula (2.11); then multiply that column
vector by that operator matrix by means of formula (2.12); and the result of that
multiplication will be the column vector, in that same basis, of the new vector |B’)
(that is, the vector obtained by operating with O on |B)).
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4. Supposing, of course, that there has been no “tampering” in the interim; and
supposing that not enough time has elapsed for the natural dynamics of the
measured system itself to bring about changes in the value of the measured observ-
able.
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do we go about that? The first thing to do is to identify the vector
space associated with that system: the space wherein all the possible
physical states of that system can be represented. Given a precise
physical description of the system, there are systematic techniques
for doing that. Then the operators associated with the various
measurable properties of that system need to be identified. There
are techniques for doing that too. With that done, the specific
correspondences between individual physical states and individual
vectors can be mapped out (the vector which corresponds to the
state wherein a certain measurable property has a certain value, for
example, will be the one which is an eigenvector, with that eigen-
value, of the operator associated with that property). Then the
present state vector of the system can be ascertained by means of
measurements, and then (given the various forces and constraints
to which the system will be subject) the state vector of any future
time can be calculated by means of the prescription of principle (C),
and then the probabilities of particular outcomes of a measurement
carried out at some such future time can be calculated by means of
principle (D), and the eff @ bf such a measurement on the state
vector can be taken into account by means of principle (E). And
then principle (C) can be applied yet again, to that n e state vector
(the state vector which emerges from the measurement) to calculate
the state vector of this system yet farther in the future, up to the
moment when the next measurement occurs, whereupon principles
(D) and (E) can be reapplied, and so on.

Notice, by the way, that principle (E) stipulates that under certain
particular circumstances (namely, when a measurement occurs) the
state vector evolves in a certain particular way (it “collapses” onto
an eigenvector of the measured observable operator). Notice, too,
that principle (C) is supposed to be a completely g € n actoant
of how the state vector evolves under a n¢yrcumstances. If that’s
all so, a question of consistency necessarily arises: it seems like (E)
ought to be just a special case of (C), that (E) ought to be deducible
from (C). But it isn’t easy to see how that could be so, since the
changes in the state vector stipulated by (E) are probabilistic,
whereas those stipulated by ( Gk, invariably, deterministic. This
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Here (before we move onto particular cases) are a few more general
technicalities.

First, the vector spaces which are made use of in quantum me-
chanics are ¢ 0 h @vactor spaces. A complex vector space is one
in which it’s permissible to multiply vectors not merely by real
numbers but by ¢ 0 mn @(i2e., real or imaginary or both) numbers
in order to produce new vectors. In complex vector spaces, the
expansion coefficients of vectors in given bases (the bl of equation
(2.1)) may be complex numbers too. That will necessitate a few
refinements of what’s been introduced thus far.

In complex vector spaces, the formula for the product of two
vectors, written in terms of their expansion coefficients in some
particular basis (that is, the formula (2.4b)), needs to be changed,
very slightly (what, precisely, it gets changed into need not concern
us here), in order to guarantee that the norm of any vector (that is,
its length: V(A|A)) remains, under all circumstances, a positive real
number. Formula (2.22) for probabilities needs to be altered very
slightly too, since, in complex spaces, (AIB) and, hence, (2.22) may
be complex numbers (and yet probabilities must necessarily be real,
positive numbers between 0 and 1). The solution is to change (2.22)
to

2.23) | < ab\yB

where the vertical bars denote absolute value (or “distance from
zero,” which is invariably a real, positive number). Equation (2.23)
stipulates that the probability that a measurement of B on a system
in the state | aw)ll produce the outcome B . b; is equal to the
square of the distance from 0 of the complex number ( |2 B b,);
and that probability, so defined, will invariably be a real and pos-
itive number. Formula (2.22), by the way, will entail not only that
| Aand - A )represent the same physical state (we’ve already seen
that to be the case), but, more generally, that | And @ )Y&epresent
the same state, where @may be any one of the infinity of complex
numbers of absolute value 1.

The elements of the operator matrices of linear operators on
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complex vector spaces (that is, the numbers O,,of ( 2 Yand( .2 1) 1 )
can be complex numbers too. Nonetheless, it may happen to some
such operators that all of their eigenvectors are associated only
with real eigenvalues (albeit, perhaps, not all of their matrix ele-
ments O,,, and perhaps even none of them, are real). Linear oper-
ators like that are called H e r mi operasm; and it’s clear from
principle (B) (since, of course, the values of physically measur-
able quantities are always real numbers) that the operators associ-
ated with measurable properties must necessarily be Hermitian
operators.

Here are some facts about Hermitian operators:

(1 M two vectors are both eigenvectors of the same Hermitian
operator, and if the eigenvalues associated with those two eigenvec-
tors are two different (real) numbers, then the two vectors in
question are necessarily orthogonal to each other.

That pretty much had to be so, if this algorithm is going to work
out right; otherwise, measurements wouldn’t be repeatable. The
different eigenvalues of a property operator, after all, correspond
to different values of that property; and (if measurements of a
property are to be repeatable) having a certain value of a certain
property must entail that subsequent measurements of that prop-
erty will certainly not find any other value of it;* and that (given
principle (D)) will require that state vectors connected with differ-
ent values of the same measurable property (lblack) and khite),
say, or lhard) and lsoft)) be orthogonal to one another.

(2) Any Hermitian operator on an N-dimensional space will
always have at least one set of N mutually orthogonal eigenvectors.
Which is to say: it will always be possible to form a basis of the
space out of the eigenvectors of any Hermitian operator; different
bases, of course, for different operators. Consider, for example, the
hardness operator of equation ( 2 )8and the color operator of
equation ( 2 9 )

(3) The reader ought to be able to persuade herself, now, of the
following: if a Hermitian operator on an N-dimensional space

5. Supposing, once again, that no tampering, and no dynamical evolution, has
gone on in the meantime.
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It will be useful, for what comes later, to give two more of those
properties names. The vectors

124 1 a€'k/)2 wi)taen d 312 a<kl)2whi t e)

are both of length 1 and are orthogonal to one another (and aren’t
orthogonal to any of the eigenvectors of color or hardness), and so
it follows that there must be a complete observable of which they
are both eigenstates, with different eigenvalues (which can always
be set at +1 and —1, respectively). Let’s call that observable “gleb.”
And the vectors

1201 a<c"k/)2 i taen)d 3@ | a€ k) Avi t e)

are both of length 1 and are orthogonal to one another (and aren’t
orthogonal to any of the eigenvectors of color or hardness or gleb),
and so it follows that there must be a complete observable of which
t h ary both eigenstates, with different eigenvalues (which can
always be set at +1 and —1, respectively). Let’s call that observable
“scrad.” Of course, the eigenstates of gleb and scrad (just like those
of color and hardness) both form different bases of the spin space.

Finally, there are rules (never mind what those rules are, precisely)
for adding and subtracting matrices to or from one another, and
for multiplying them by one another. The ¢ o nurd t ®frtwo
matrices A and B which is denoted by the symbol [ A Bid defined
to be the object A B- B A(the rules for multiplying matrices by
one another entail that the order of multiplication counts: A Bisn’t
necessarily the same as B A .

Now, it can be shown that in the event that [ 8,] 0 (that is,
in the event that A Bi squalto B A A and Bs h aarleast one set
of eigenvectors which form a basis of the space. A little reflection
will confirm that the operator matrices of incompatible observables
can’t possibly share any such complete basis of eigenvectors (since
such eigenvectors would correspond to definite value states of both
observables at the same time). It must be the case, then, thatt h e
c omuatd $s0 i nrapta Bd brseamd e iacreevzne rSo .
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the property of commutativity (that is, the condition [A,B] . 0)
turns out to be a convenient mathematical test for compatibility.
Moreover, in cases of incompatible observables, the commutator of
the two observables in question turns out to be extremely useful
for assessing the degree of their incompatibility.t

Coordinate Space

Let’s begin to apply all this. Let’s see, in some detail, how to set up
a quantum-mechanical representation, and a quantum-mechanical
dynamics, of some simple physical system. Forget about color and
hardness for the moment. Think of a familiar sort of particle, one
with only the familiar sorts of physical properties: position and
velocity and momentum and energy and things like that.

Here’s a way to get started: We know, from hundreds of years of
experience, that the behaviors of relatively big particles, with rela-
tively big masses (particles you can see, like rocks and baseballs
and planets) are very well described by the classical mechanics of
Newton. That entails something about the quantum theory of
particles: whatever that theory ends up predicting about the
strange, tiny particles of Chapter 1, it ought to predict that every-
day particles, subject to everyday circumstances, will behave in the

6. Perhaps the notion of there being various different degrees of incompatibility
requires some elucidation. Here’s what the idea is (or here’s what it is, at any rate,
in the simplest case, when the observables involved are both complete):

Consider two complete and incompatible observables (call them A and B) of some
physical system. If, when any particular eigenstate of A obtains, the outcome of a
measurement of B can be predicted (by means of formula (2.23)) with something
approaching certainty (that is: if, for each eigenvector of A, there is some particular
eigenvector of B such that the product of those two vectors is something approach-
ing one), then A and B are said to be only very slightly incompatible. But if (at the
other extreme), when any particular eigenstate of A obtains, the probabilities of
the various possible outcomes of a measurement of B are all the same (that is: if
knowing the value of A gives us no information whatever about the outcome of an
upcoming measurement of B),t h @ and B are said to be m a ix m a incpmpatible.

So (for example) color and hardness (which are maximally incompatible observ-
ables) are a good deal more incompatible with one another than color and scrad
are.
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